MATH2068: Mathematical Analysis II

Home Test 1
5:00pm, 24 Mar 2023

Important Notice:

\& The answer paper Must be submitted before 25 Mar 2023 at 5:00 pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper Must include your name and student ID in each page.

Answer ALL Questions

1. (30 points)
(a) Let $\alpha>-1$ and let f be a monotone function on $(0,1]$. Prove or disprove the following statements: if the improper integral $\int_{0}^{1} x^{\alpha} f(x) d x$ exists, then $\lim _{x \rightarrow 0} x^{\alpha+1} f(x)=0$.
(b) Show that if f is a Riemann integrable function over $[0,1]$, then the set of all continuous points of f is dense in $[0,1]$.
Is the above assertion still true if f is defined on \mathbb{R} so that the improper integral $\int_{-\infty}^{\infty} f(x) d x$ is convergent? That is, whether the set of all continuous points of f is dense in \mathbb{R} in this case.
(c) If $f \in R[0,1]$, does the following statement hold: $\int_{0}^{1}(f(x))^{2} d x=0$ if and only if $f(c)=0$ for all continuous point c of f.

$$
* * * \text { See Next Page } * * *
$$

2. (30 points) Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a sub-additive positive homogenous function, that is, it satisfies the conditions: $u(\mathbf{x}+\mathbf{y}) \leq u(\mathbf{x})+u(\mathbf{y})$ and $u(t \mathbf{x})=t u(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $t \geq 0$.
(a) Show that for every $\mathbf{x}, \mathbf{h} \in \mathbb{R}^{n}$, the function $t \in \mathbb{R} \mapsto u(\mathbf{x}+t \mathbf{h})$ is convex.

From this, show that the function $t \mapsto \frac{u(\mathbf{x}+t \mathbf{h})-u(\mathbf{x})}{t}$ is monotone on $\mathbb{R} \backslash\{0\}$.
(b) By using Part (a), show that for every $\mathbf{x}, \mathbf{h} \in \mathbb{R}^{n}$,
$\lim _{t \rightarrow 0} \frac{u(\mathbf{x}+t \mathbf{h})-u(\mathbf{x})}{t}$ exists if and only if $\lim _{t \rightarrow 0} \frac{u(\mathbf{x}+t \mathbf{h})+u(\mathbf{x}-t \mathbf{h})-2 u(\mathbf{x})}{t}=0$.
(c) Fix $\mathbf{x} \in \mathbb{R}^{n}$ and assume that $u_{\mathbf{x}}^{\prime}(\mathbf{h}):=\lim _{t \rightarrow 0} \frac{u(\mathbf{x}+t \mathbf{h})-u(\mathbf{x})}{t}$ exists for all $\mathbf{h} \in \mathbb{R}^{n}$. Show that the function $u_{\mathrm{x}}^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear.

