Important Notice:

- The answer paper Must be submitted before 25 Mar 2023 at 5:00 pm.
- ♠ The answer paper MUST BE sent to the CU Blackboard.

The answer paper Must include your name and student ID in each page.

Answer ALL Questions

1. (30 points)

- (a) Let $\alpha > -1$ and let f be a monotone function on (0, 1]. Prove or disprove the following statements: if the improper integral $\int_0^1 x^{\alpha} f(x) dx$ exists, then $\lim_{x \to 0} x^{\alpha+1} f(x) = 0$.
- (b) Show that if f is a Riemann integrable function over [0, 1], then the set of all continuous points of f is dense in [0, 1].
 Is the above assertion still true if f is defined on ℝ so that the improper integral ∫[∞]_{-∞} f(x)dx is convergent? That is, whether the set of all continuous points of f is dense in ℝ in this case.
- (c) If $f \in R[0,1]$, does the following statement hold: $\int_0^1 (f(x))^2 dx = 0$ if and only if f(c) = 0 for all continuous point c of f.

*** See Next Page ***

- 2. (30 points) Let $u : \mathbb{R}^n \to \mathbb{R}$ be a sub-additive positive homogenous function, that is, it satisfies the conditions: $u(\mathbf{x} + \mathbf{y}) \le u(\mathbf{x}) + u(\mathbf{y})$ and $u(t\mathbf{x}) = tu(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $t \ge 0$.
 - (a) Show that for every $\mathbf{x}, \mathbf{h} \in \mathbb{R}^n$, the function $t \in \mathbb{R} \mapsto u(\mathbf{x} + t\mathbf{h})$ is convex. From this, show that the function $t \mapsto \frac{u(\mathbf{x}+t\mathbf{h})-u(\mathbf{x})}{t}$ is monotone on $\mathbb{R} \setminus \{0\}$.
 - (b) By using Part (a), show that for every $\mathbf{x}, \mathbf{h} \in \mathbb{R}^n$, $\lim_{t \to 0} \frac{u(\mathbf{x} + t\mathbf{h}) - u(\mathbf{x})}{t}$ exists if and only if $\lim_{t \to 0} \frac{u(\mathbf{x} + t\mathbf{h}) + u(\mathbf{x} - t\mathbf{h}) - 2u(\mathbf{x})}{t} = 0.$
 - (c) Fix $\mathbf{x} \in \mathbb{R}^n$ and assume that $u'_{\mathbf{x}}(\mathbf{h}) := \lim_{t \to 0} \frac{u(\mathbf{x} + t\mathbf{h}) u(\mathbf{x})}{t}$ exists for all $\mathbf{h} \in \mathbb{R}^n$. Show that the function $u'_{\mathbf{x}} : \mathbb{R}^n \to \mathbb{R}$ is linear.

*** END OF PAPER ***